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Overview

In this talk, | will focus on how current visual LLMs deal with a
fundamental element of human multimodal communication: the
ability of narrating events that happen to us and around us.

This is a fundamental and pervasive element of human
language communication, widely regarded as a hallmark of
human intelligence [Heider & Simmel, 1944; Wiessner, 2014].



Overview

We —human speakers—narrate what happens in the
surrounding multimodal (primarily visual) context in many
communicative scenarios and for very different purposes.















"A story describes a sequence of events involving one
or more people.”

—-Antoniak et al., 2024



A hallmark of human intelligence

Telling stories requires many complex skills, including:
* understanding sequences of visual actions;
* |leveraging common sense and previous knowledge;
e understanding others’ feelings (theory of mind);
* making inferences and predictions;

e targeting an audience: expertise, POV, style, etc.



Beyond standard language-vision tasks

This goes well beyond the set of abilities required for standard
tasks like Visual Question Answering or Image Captioning

... Where the focus is typically on objects and attributes
grounded (i.e., fully visible) in a static image!
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Beyond standard language-vision tasks

Visual Question Answering

e \What color is the raincoat?

 What does the person on the right hold”
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Beyond standard language-vision tasks

Visual Question Answering

* What color is the raincoat? Yellow \/
HIH), :
» What does the person on the right hold? Book ¥
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Beyond standard language-vision tasks

Image Captioning
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Beyond standard language-vision tasks

Image Captioning

* “A couple of tourists on the lakeside on a rainy day” +

© ©

— « “Two people waiting at the edge of a parking lot” +
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Real-life language can be different
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Real-life language can be different

“The flowers are there”
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Real-life language can be different

“The flowers are there™”

*semantically underspecified
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Real-life language can be different

“The flowers are there™”

v

*semantically underspecified
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Real-life language can be different

“The flowers are there™”
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CLIP and underspecified descriptions

LDYESCRIPTION SCORE

The woman 15 .'-'.I;Elnding above the two |'|-;a|:]-:|:|;l suttcases. L ST
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CLIP and underspecified descriptions

TYPE DESCRIPTION SCORE |
Original The woman is standing above the two packed suitcases. (L8565
Quantity The woman 15 standing above some packed suitcases.

Gender The person is standing above the two packed suilcases.
Gender+Number They are standing above the two packed suitcases.

Location The woman is standing here.

Object The woman is standing above this.

Full They are doing something here.

manually perturbed descriptions to make them underspecified
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CLIP and underspecified descriptions

TYPE
Original

Quantity
Gender
Gender+Number
Location
Object

Full

DESCRIPTION SCORE 1
The woman is standing above the two packed suitcases. (L8565
The woman 15 standing above some packed suitcases. (L8275
The person is standing above the two packed suilcases. 0. 7608
They are standing above the two packed suitcases. 0.7435
The woman is standing here. 0.5537
The woman is standing above this. 0.4931]
They are doing something here. 04646

(much) lower scores assigned to underspecified captions!
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Takeaways

Contrastive models (a /la CLIP) struggle with communicatively
plausible —underspecified — descriptions.

We need to shift the paradigm to a scenario where models use
language as humans do, that is, with a communicative goal.

Visual storytelling is one such task!
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Visual Storytelling



From encoders to generative VLMs

In recent years, huge advancements in the development of
visual LLMs (VLMs): GPT-4V, LLAVA, Gemini, Molmo...

¢ impressive capabilities on virtually any language and vision
tasks—|C and VQA mentioned above are basically solved

¢ no fine-tuning: these big models can be used via prompting
for any tasks, including generating narrations for visual
events, being them (sequences of) images or videos
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Generative VLMs

What could be a good description of this event by the journalist?
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Big questions

1. How good are these models at generating stories—a task
requiring tons of (linguistic, pragmatic, creative) abilities”

2. How can we evaluate models—as narrating visual events is
not something that can be measured via accuracy”?
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Back to the (recent) past
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ingle-image events

If | have tons of energy
INTENTION
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CANDIDATE ACTIONS
| will play baseball with the men

| will play a game of tennis with the mar

| will compare images of me hitting the tennis ba
| will play baseball with the women
| will applaud my favourite ¢ nlayer of all time
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Takeaways

Simplified task: single-event prediction (single-event “story”)

Simplified evaluation: multiple-choice (also, no good generative
VLMs in 2020)

Big gap with human performance: ~20-accuracy points!

What about generative VLMs?
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Let’s generate!
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1 Introduction

In eecent years, ransiommer-hased gessrative visus
language models (YLMs) have shown outstand-
ing results i many downstream taaks,  Similar
to what has happened in NLP., where pre-trained
generative menlels have supplasted provious archi-
tpclunes thanks b (Beie Beashiliny and poeahilay,
VLM bave proven eflfective in solving langusge-
and-visbon tasks by mumeng het IBLD goncralive
problems. This is possihle thanks o their massive

Umiversity of Amstendam
=, perrel le@uva.nl
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respectrrely, bl pol o Lhe combination of both

quesiioes about #, or engage in & dialogee [wee
Calfagni e g1, W04, for an overvesw . Thed mugin
suggest that YIMs have skills similar to those
nevded for meaningful multmodal comemication.

I road-File multimodal communication, human
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How to evaluate the generations?

1. Reference-based evaluation

2. Reference-free evaluation

39



Reference-based evaluation

Similarity between generated action and each of the five
candidates—BLEU4, CIDER, ROUGE, Meteor, BERTScore

f sim(generated, target) is the highest, then ‘correct’

Accuracy-based performance
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Reference-based evaluation

model accuracy ”
MAPL 32.9x8.7
FROMAGe 32.744.8
BLIP-2 49.512.6
IDEFICS 31.5+10.9

*Based on BERTScore (similar patterns for other metrics)
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Reference-free evaluation

Human evaluation on a sample of <image, intention,
generated action> datapoints (same for each model)

We asked: “Is the second part of the sentence [the generated
action| a plausible continuation of the first part, based on the
contents of the image?”

Annotators could choose between ‘Yes’ or ‘NoO’

Performance based on proportion of ‘Yes’ answers
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Reference-free evaluation

1.0 1

0.8 1

MIT

T T
BLIP2 MAPL IDEFICS FROMAGE

BLIP-2’s generations deemed plausible 77% of times!
Other models in the 40-45% range

43



A negative example

If I want to socialize...

44

Ground-truth
I will play the
Wii with my
friends

BLIP-2
I will play pool
with the guys X




A negative example: Pragmatics!

If I want to socialize...

Ground-truth
I will play the
Wii with my
friends

BLIP-2
I will play pool
with the guys X

There is a pool and there are some guys! But the
annotators find this action pragmatically implausible,
as the people in the image are busy playing video games.
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Takeaways

BLIP-2 is the best overall model on both evaluations

hese results suggest this model can generate plausible single-
image “stories” —notably, the other tested models can’t (note:
BLIP-2 has seen COCO captions in training)

Also, importance of using multiple evaluations!

What about VLMs on actual stories, i.e., sequences of
visual events?
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en vial groemling. An akdtional sadvantape
of CRROCVIET b ik ivdelar desagn, whene the
cininbuizn of cak comijrndnl Gan b sacued
anl imerpreied indrvidually.

1 Invirodsction

Creneraiang & rextusl siory el ss ploisible grven o
sequence o immiges is 6 chalkengimg mak mmeodvang
anpeiits such i crims- ikl maeractaons, einparal
deprrdencics Bevween ingueic and vasiisl conlem,
and cavsal reasoning. 1m the language-ased-vision
comenanly, Huang ¢ all (2016 operationaliscd tha
task and released the Vissal Storyvielling Datases
(WISTh a collection of English stories created by
apeakers on 1 ol 3- e veonsd segmenees. hev-
ernl mnddels have hedm proposed for e sk of
geestalsg pliausihle sBaries fin a given segiaiige,
rangang Trosn KMNMs (Kim o &1, 2005 b Trans-
fommers. irained rither cnd-1o-cml or levoraging
adidstional keededge -praphs (Chen ef al.. 20Z1)
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Faguirg 1 Une oy ol comespondiig (mags seqecics
froom the WIET datset. Moun phesses B geeen coninbuie
prsitively pyihe geosading score by GROOVIST. (e
il red contn bate gegatvely. The CROOVIST sooee foo
Was. Rarmplc b 0LR50, L. o Il Cofnaler i i well
Eroundsd (within mage: | =1, 1L Bea vieswed w8 oodor

appuopaase—hey indesd poaely corgllate with
human judgments (Wang et al.. J018). Moreover,
a proper ovaluation massd consader multiple aspocts,
such as coheremce, grammaticality and, imgpor-
tamly, wesiial groaindsng, Ve, mest @valiialon
et progedad spesehcally Sor vasiial ssoryvieiling
ko e consider the images al all (Hu of al., 20210,

I this paper, we focus on evaluating a siory™s
degree of groundeng, tha s, i exeenl 0 wiach
& slory 1= whoul the enpises shosm i images,
Tar tha best of our kniwwledge, there is oaly ang
melne propongsd fo dale for cvalusting groundeng
in vizml storyielling. the Visual Grounding scorer
(RoVIST-Y0) by Wang et al. (2022). We carmy
ol an extensive analysis of dis metric and reveal
thai it ha= crlical shoncomings. To overcome
this, we propesé a povel, molsler evalialsan
i, which we nasme GRUCWYST {prodndreg
ahfecty fn wvived wordelfag). We show that
GROCAET b= rodaist 1o sempaoral emsalspnmsnis,
cormefated with human imtuitions aboni grounding,
and gasy 1o inleroret.  Cur code iz available ar:
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There was lots to see and do at the festival, including listening
to unusual instruments. Many stalls had handmade clothing and
one even had dresses specifically for little girls... By midday \betract

thousands were in attendance, the biggest turn out yet!
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Visual Grounding in Visual Storytelling

There is just one metric, RoViST-VG [Wang et al. 2022], trained to
map nouns to an image’s regions in Flickr30K Entities

However, we noticed something odd with it (on 3 VST datasets):
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New metric for Visual Grounding

CLIPScore exhibits the expected pattern, but:

e (General image-text alignment score: here computed at the
iIndividual <sentence, image> level—not at the story level!

* Unable to capture temporal misalignments regarding
‘where things are shown’ vs ‘where things are mentioned’

* \We propose a novel metric based on human stories!
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GROOVIST

 \We process a story and extract NPs (RoVIST-VG uses nouns)

* Image-text alignment scores between each NPs and each
bounding box (BB) in the sequence w/ CLIP; select highest

* Penalizing poorly aligned <NP, BB> pairs based on avg. —
they’ll contribute negatively to the overall metric
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GROOVIST

 \We process a story and extract NPs (RoVIST-VG uses nouns)

* Image-text alignment scores between each NPs and each
bounding box (BB) in the sequence w/ CLIP; select highest

* Penalizing poorly aligned <NP, BB> pairs based on avg. —
they’ll contribute negatively to the overall metric

(D ie1 NPypos; + > ;21 NPreg,) / (n+m)
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Analysis of GROOVIST
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Interpretable output (not in GLIP!)

1) there was lots to see and do at the festival , including listening to unusual instruments .
2) many stalls had handmade clothing and one even had dresses specifically for little girls .
3) as part of the festival grounds , there were also numerous sculptures that one could

touch . 4) many stalls were adomed with handmade glass bottles . 5) by midday thousands
were in attendance , the biggest turn out yet !

Highly grounded story!

GROOQVIST = 0.855 (in range [-1,1])
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Standard evaluation of VST

Reference-based: comparing generated stories to human
ones via METEOR, CIDEr, BERTScore, BLEURT, etc.

+ but, there can be many ‘good’ stories for the same
sequence! No “"ground-truth”

Reference-free: RoViST [Wang et al. 2022] producing a score for
visual grounding, coherence, and non-redundancy

¢ put, no way to assess the validity of these metrics! E.g., Is
a high visual grounding in line with how people tell stories”
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A reference-free, human-based evaluation

Here, we propose a ‘good’ generated story is similar to a
human one with respect to these 3 main components

We operationalize this in terms of a distance d between the
scores achieved by generated and human stories

e [he lower the distance, the more human-like the stories!
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A reference-free, human-based evaluation

Here, we propose a ‘good’ generated story is similar to a
human one with respect to these 3 main components

We operationalize this in terms of a distance d between the
scores achieved by generated and human stories

e [he lower the distance, the more human-like the stories!

dgar = (A5 + AT +diias) /3
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Three components

1. Visual grounding: we use GROOVIST

2. (Coherence: average probabillity that s follows preceding
context computed using ALBERT [Lan et al., 2020]

3. Repetition (non-redundancy): Jaccard Similarity
between non-overlapping 4-gram phrases of a sentence
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Five models

1. GLAC Net VST-trained
models

2. AREL

3. TAPM
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Five models

. GLAC Net VST- tralned
models
. AREL
. TAPM general-purpose
VLMs
4, BLIP-2

5. LLaVA
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Five models

1. GLAC Net

2. AREL

gnsformD
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Results

Recall: The lower, the better
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0.345
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Results

Recall: The lower, the better

achieves comparable
performance to LLaVA
w/ LLAMAZ
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Human evaluation

Do these (low) numbers ‘translate’ into high-quality, human-like
stories” Yes, but...

1 60 57 BN TAPM (4+LLAMA 2)
=1 B LLaVvA

245

530

= 19.6 20.6

2 151

o

human story machine story both fine both bad
is better s better
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Takeaways

Our evaluation is sensible: the lower the distance, the higher the
chance for the story to be judged as “as good as’

At the same time, human annotators still largely prefer human
stories to model-generated ones

Capturing coherence, repetitiveness, and visual grounding is not
the whole story —creativity, pragmatics, perspective?
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Discussion

Evaluating VLLMs’ outputs in communicative scenarios is an open
challenge: complex task, complex evaluation

Reference-based metrics not suitable. We can ask human experts
(expensive), or use VLMs as judges (but see Bavaresco et al. 2024)

Another promising route is to devise automatic metrics and
evaluations based on human(-like) characteristics —as we did
here. We explored three, but there are many more!

Plus, move to even more naturalistic data (videos), often domain-
specific and with more implicit and underspecified language
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