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In this talk, I will focus on how current visual LLMs deal with a 
fundamental element of human multimodal communication: the 
ability of narrating events that happen to us and around us. 

This is a fundamental and pervasive element of human 
language communication, widely regarded as a hallmark of 
human intelligence [Heider & Simmel, 1944; Wiessner, 2014].
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We—human speakers—narrate what happens in the 
surrounding multimodal (primarily visual) context in many 
communicative scenarios and for very different purposes.

Overview
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–Antoniak et al., 2024

“A story describes a sequence of events involving one 
or more people.”



Telling stories requires many complex skills, including: 

• understanding sequences of visual actions; 

• leveraging common sense and previous knowledge; 

• understanding others’ feelings (theory of mind); 

• making inferences and predictions; 

• targeting an audience: expertise, POV, style, etc.

A hallmark of human intelligence
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This goes well beyond the set of abilities required for standard 
tasks like Visual Question Answering or Image Captioning 

… Where the focus is typically on objects and attributes 
grounded (i.e., fully visible) in a static image!

Beyond standard language-vision tasks 
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Visual Question Answering 

• What color is the raincoat? Yellow 

• What does the person on the right hold? Umbrella

Beyond standard language-vision tasks 
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Visual Question Answering 

• What color is the raincoat? Yellow 

• What does the person on the right hold? Book  

Beyond standard language-vision tasks 
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Image Captioning 

• “Two people taking pictures by the lake.” 

• “A couple of tourists taking pictures by a lake on a rainy day.”

Beyond standard language-vision tasks 
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Image Captioning 

• “A couple of tourists on the lakeside on a rainy day” 

• “Two people waiting at the edge of a parking lot”

Beyond standard language-vision tasks 
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“The flowers are there” t(he yellow vase on the windowsill 
overlooking the garden”

Real-life language can be different
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(ACL 2023)



CLIP and underspecified descriptions
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CLIP and underspecified descriptions

manually perturbed descriptions to make them underspecified
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CLIP and underspecified descriptions

(much) lower scores assigned to underspecified captions! 
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Contrastive models (à la CLIP) struggle with communicatively 
plausible—underspecified—descriptions. 

We need to shift the paradigm to a scenario where models use 
language as humans do, that is, with a communicative goal. 

Visual storytelling is one such task!

Takeaways

23



Visual Storytelling



In recent years, huge advancements in the development of 
visual LLMs (VLMs): GPT-4V, LLAVA, Gemini, Molmo… 

impressive capabilities on virtually any language and vision 
tasks—IC and VQA mentioned above are basically solved 

no fine-tuning: these big models can be used via prompting 
for any tasks, including generating narrations for visual 
events, being them (sequences of) images or videos

From encoders to generative VLMs
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Generative VLMs
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1. How good are these models at generating stories—a task 
requiring tons of (linguistic, pragmatic, creative) abilities? 

2. How can we evaluate models—as narrating visual events is 
not something that can be measured via accuracy?

Big questions
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Back to the (recent) past
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(EMNLP Findings 2020)



Single-image events
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Single-image events
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Results
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Simplified task: single-event prediction (single-event “story”) 

Simplified evaluation: multiple-choice (also, no good generative 
VLMs in 2020) 

Big gap with human performance: ~20-accuracy points! 

What about generative VLMs?

Takeaways
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Let’s generate!
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(EMNLP Findings 2020)(EvalMG @COLING 2025)



Let’s generate!
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Let’s generate!
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(EMNLP Findings 2020)(EvalMG @COLING 2025)

prompt: If I have tons of energy, what will I do? 

answer: “I will challenge the guy on the court”



Let’s generate!
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(EMNLP Findings 2020)(EvalMG @COLING 2025)

prompt: If I have tons of energy, what will I do? 

answer: “I will challenge the guy on the court”

BLIP-2
IDEFICSFROMAGe!



1. Reference-based evaluation 

2. Reference-free evaluation

How to evaluate the generations?
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Similarity between generated action and each of the five 
candidates—BLEU4, CIDER, ROUGE, Meteor, BERTScore 

If sim(generated, target) is the highest, then ‘correct' 

Accuracy-based performance

Reference-based evaluation
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*Based on BERTScore (similar patterns for other metrics)

Reference-based evaluation
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Human evaluation on a sample of <image, intention, 
generated action> datapoints (same for each model) 

We asked: “Is the second part of the sentence [the generated 
action] a plausible continuation of the first part, based on the 
contents of the image?” 

Annotators could choose between ‘Yes’ or ‘No’ 

Performance based on proportion of ‘Yes’ answers

Reference-free evaluation

42



Reference-free evaluation
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BLIP-2’s generations deemed plausible 77% of times! 
Other models in the 40-45% range



A negative example
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A negative example: Pragmatics!

45

There is a pool and there are some guys! But the 
annotators find this action pragmatically implausible, 

as the people in the image are busy playing video games.



BLIP-2 is the best overall model on both evaluations 

These results suggest this model can generate plausible single-
image “stories”—notably, the other tested models can’t (note: 
BLIP-2 has seen COCO captions in training) 

Also, importance of using multiple evaluations! 

What about VLMs on actual stories, i.e., sequences of 
visual events?

Takeaways
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Evaluate Visual Storytelling I
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Evaluate Visual Storytelling I
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There was lots to see and do at the festival, including listening 
to unusual instruments. Many stalls had handmade clothing and 
one even had dresses specifically for little girls... By midday 
thousands were in attendance, the biggest turn out yet!



Evaluate Visual Storytelling I
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There was lots to see and do at the festival, including listening 
to unusual instruments. Many stalls had handmade clothing and 
one even had dresses specifically for little girls... By midday 
thousands were in attendance, the biggest turn out yet!

Dimensions to evaluate in a story: 

• information/(non-)repetition 

• coherence 

• visual grounding
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Visual Grounding
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There is just one metric, RoViST-VG [Wang et al. 2022], trained to 
map nouns to an image’s regions in Flickr30K Entities 

However, we noticed something odd with it (on 3 VST datasets): 

Visual Grounding in Visual Storytelling
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CLIPScore exhibits the expected pattern, but: 

• General image-text alignment score: here computed at the 
individual <sentence, image> level—not at the story level! 

• Unable to capture temporal misalignments regarding 
‘where things are shown’ vs ‘where things are mentioned’ 

• We propose a novel metric based on human stories!

New metric for Visual Grounding
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• We process a story and extract NPs (RoViST-VG uses nouns) 

• Image-text alignment scores between each NPs and each 
bounding box (BB) in the sequence w/ CLIP; select highest 

• Penalizing poorly aligned <NP, BB> pairs based on avg.—
they’ll contribute negatively to the overall metric

GROOViST

62

More details in the paper!
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Correlation w/ image-caption grounding in Flickr8kExpert 



Analysis of GROOViST
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Analysis of GROOViST
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Vision-language misalignment (T)



Analysis of GROOViST
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Vision-language misalignment (T) Proportion of NPs in the story (P)



Interpretable output (not in CLIP!)
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Highly grounded story! 

GROOViST = 0.855 (in range [-1,1])



Evaluate Visual Storytelling II

72

(EMNLP 2023)(EMNLP Findings 2024)
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There was lots to see and do at the festival, including listening 
to unusual instruments. Many stalls had handmade clothing and 
one even had dresses specifically for little girls... By midday 
thousands were in attendance, the biggest turn out yet!

Dimensions to evaluate in a story: 

• new information 

• coherence 

• visual grounding 
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A comprehensive evaluation
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Reference-based: comparing generated stories to human 
ones via METEOR, CIDEr, BERTScore, BLEURT, etc. 

but, there can be many ‘good’ stories for the same 
sequence! No “ground-truth”! 

Reference-free: RoViST [Wang et al. 2022] assessing visual 
grounding, coherence, and amount of repetition 

but, no way to assess the validity of these metrics! E.g., is 
a high visual grounding in line with how people tell stories?  

Standard evaluation of VST
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Here, we propose a ‘good’ generated story is similar to a 
human one with respect to these 3 main components 

We operationalize this in terms of a distance d between the 
scores achieved by generated and human stories 

• The lower the distance, the more human-like the stories!

A reference-free, human-based evaluation
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1. Visual grounding: we use GROOViST 

2. Coherence: average probability that s follows preceding 
context computed using ALBERT [Lan et al., 2020] 

3. Repetition (non-redundancy): Jaccard Similarity 
between non-overlapping 4-gram phrases of a sentence

Three components
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1. GLAC Net 

2. AREL 

3. TAPM 

4. BLIP-2 

5. LLaVA

Five models
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Recall: The lower, the better

Results
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Recall: The lower, the better

Results
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achieves comparable 
performance to LLaVA 

w/ LLAMA2



Do these (low) numbers ‘translate’ into high-quality, human-like 
stories? Yes, but…

Human evaluation
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Our evaluation is sensible: the lower the distance, the higher the 
chance for the story to be judged as “as good as” 

At the same time, human annotators still largely prefer human 
stories to model-generated ones 

Capturing coherence, repetitiveness, and visual grounding is not 
the whole story—creativity, pragmatics, perspective?

Takeaways
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Evaluating VLMs’ outputs in communicative scenarios is an open 
challenge: complex task, complex evaluation 

Reference-based metrics not suitable. We can ask human experts 
(expensive), or use VLMs as judges (but see Bavaresco et al. 2024!) 

Another promising route is to devise automatic metrics and 
evaluations based on human(-like) characteristics—as we did 
here. We explored three, but there are many more! 

Plus, move to even more naturalistic data (videos), often domain-
specific and with more implicit and underspecified language

Discussion
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